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Abstract—Large behavior models (LBMs) have shown strong
dexterous manipulation capabilities by extending imitation learn-
ing to large-scale training on extensive multi-task robot data,
yet their generalization remains limited by the insufficient cov-
erage of available robot data. To expand this coverage with-
out costly additional data collection, recent work increasingly
relies on co-training: jointly learning from target robot data
and heterogeneous data modalities. However, how different co-
training data modalities and training strategies affect policy
performance remains poorly understood. We present a large-
scale empirical study examining five co-training data modalities—
standard vision-language data, dense language annotations for
robot trajectories, cross-embodiment robot data, human videos,
and discrete robot action tokens—across single- and multi-phase
training strategies. Our study leverages 4,000 hours of robot
and human manipulation data and 50M vision—language samples
to train vision-language-action (VLA) policies. We evaluate 89
policies over 58,000 simulation rollouts and 2,835 real-world
rollouts. Our results show that co-training with various forms of
vision-language and cross-embodiment robot data substantially
improves generalization to distribution shifts, unseen tasks, and
language following, while discrete action token variants yield
no statistically significant benefits. Furthermore, combining ef-
fective modalities produces cumulative gains and enables rapid
adaptation to unseen long-horizon dexterous tasks via fine-
tuning. We find that training exclusively on robot data degrades
the visiolinguistic understanding of the vision-language model
backbone, while co-training with the effective data modalities
restores these capabilities, as measured by standard vision-
language, spatial reasoning, and multimodal reasoning bench-
marks. Finally, explicitly conditioning action generation on chain-
of-thought traces learned from co-training data does not improve
performance in our simulation benchmark. Together, these results
provide a systematic understanding of co-training and practical
guidance for building scalable generalist robot policies.

Project page:https://co-training-1bm.github.io/
I. INTRODUCTION

Robot learning is increasingly moving towards generalist
models that can perceive, understand, and act in the physical
world. Recent efforts have focused on training large behavior
models (LBMs) [1]—embodied foundation models trained on
large-scale multi-task robot datasets—to produce dexterous
manipulation policies. Within this family, vision-language-
action models (VLAs) [37, 100, 21, |6l 33, 167, [5] are a
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representative subclass of LBMs that integrate visual and
linguistic inputs for action generation. Despite progress, LBMs
still lag behind non-embodied foundation models, such as
vision-language models (VLMs) [32] [16} 65| [73], in semantic
and spatial understanding and in open-world generalization.
This limitation can be attributed to the significant disparity in
data scale [25]: robot data is orders of magnitude smaller than
the internet-scale text and image corpora used to train VLMs.

To bridge this data gap, many recent works [33, 44}
S, 139, (13} 161} [84]] use co-training—jointly learning target
robot (i.e., the deployment embodiment) data alongside het-
erogeneous data modalities, aiming to enhance the model’s
understanding of the physical world and its generalization
abilities. These co-training data modalities include: standard
vision-language (VL) data [33} 99, 98| [39], dense language
annotations for robot trajectories [92, 44, 93| 184} 161, [11],
cross-embodiment robot data [1} 50, 48, 69, [37, 38]], human
videos [10, [13} 188, 152, 190, 136], and discrete robot action
tokens [93] 22| 35| 133]]. Despite the growing interest, current
studies typically evaluate only a subset of these modalities
using inconsistent experimental setups, leaving the empirical
effectiveness of co-training largely unexplored.

In this work, we systematically investigate how different
data modalities and co-training strategies affect policy per-
formance through large-scale experiments toward a generalist
LBM. We adopt a VLA architecture consisting of a pretrained
VLM backbone and an action head. Our model is trained with
flow matching [46, 49| to predict continuous robot actions and
next-token objectives for discrete tokens. An overview of our
study is illustrated in Fig. [T}

We evaluate five major co-training data modalities (Fig. [2):
(1) Standard vision-language data, encompassing visual
question answering, object localization, and spatial reasoning
tasks, which provide rich commonsense knowledge about
the physical world. (2) Dense language annotations for
robot trajectories, generated through both heuristic script-
ing and VLM-based captioning, offering explicit semantic
labels for actions, goals, and object relationships. (3) Cross-
embodiment robot data, which encompasses manipulation
demonstrations across varied robot morphologies and envi-
ronments. (4) Large-scale egocentric human videos that
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Overview of the data, model architecture, and evaluation setup. Our policy is built on a pretrained vision-language model backbone combined with

an Action Flow Transformer. It is trained on target robot data alongside heterogeneous co-training modalities, including standard vision-language data, dense
language annotations for robot data, cross-embodiment robot data, human videos, and discrete robot action tokens. We evaluate policies in simulation on seen
and unseen tasks, under nominal conditions and distribution shifts, and in the real-world for language following, and long-horizon dexterous manipulation.

expose models to diverse visual contexts, object interactions,
and motion patterns beyond robot trajectories. We explore two
approaches to leverage human videos: first, extracting discrete
latent action tokens from a sequence of frames; second, gener-
ating language annotations by prompting a VLM with visual
context and a task instruction to describe motions, goals, and
objects on a per-frame basis. (5) Discrete robot action tokens,
where continuous robot actions are compressed into low-
dimensional discrete spaces through frequency-based methods
(e.g., FAST [58])) or vector quantization-based methods (e.g.,
VQ-VAE [72]]), probing whether such abstraction improves
generalization.

We also study strategies for incorporating these modalities
at different training phases (i.e., rounds of training with distinct
data composition). Additionally, we examine whether combin-
ing effective co-training modalities yields cumulative perfor-
mance gains. We further probe whether co-training improves
representation quality by fine-tuning on unseen long-horizon,
dexterous tasks. We then study how the VLM backbone
is shaped by effective co-training modalities using a suite
of standard vision-language benchmarks. Finally, we study
explicit chain-of-thought (CoT) [77] conditioning for action
generation, where the policy first produces intermediate CoT
traces learned from the co-training data and then uses them to
generate continuous actions.

Our policies are evaluated in both simulation and real-world
settings. In total, we train and compare 89 VLA policies using
about 4,000 hours of robot and human manipulation data plus
50M vision-language samples. The policies are assessed over
58,000 simulation rollouts across seen and unseen tasks, in
nominal and distribution shift (DS) settings, and over 2,835
real-world rollouts covering language following and long-
horizon dexterous tasks.

Our results provide practical guidance for co-training
LBMs. In summary: (1) Diverse vision-language data and
cross-embodiment robot data consistently improve generaliza-
tion to distribution shifts, unseen tasks, and language follow-
ing, while discrete action token variants provide no benefit.
(2) Combining effective modalities yields cumulative gains
and enables more efficient adaptation to unseen long-horizon
dexterous tasks via fine-tuning. (3) Training exclusively on
robot data can erode the visiolinguistic capabilities of the VLM
backbone, whereas effective co-training helps preserve this
understanding, as reflected by improved performance on stan-
dard vision-language benchmarks. (4) Explicitly conditioning
action generation on chain-of-thought traces learned from co-
training data does not improve performance in our simulation
benchmark. Together, these findings constitute a controlled,
large-scale empirical map of which co-training signals and
strategies are most useful for building scalable, generalist robot



policies.

II. METHOD

In this section, we first introduce our co-training framework
in Section [[I-Al including the problem formulation, model
architecture, and our co-training and inference strategies. We
then describe in Section how the target robot data and
diverse co-training datasets are curated for this study.

A. Co-training Framework

1) Problem Formulation: Our objective is to learn a policy
my that can leverage diverse co-training data modalities. The
policy 7y takes as input a sequence of n images I and a text
prompt ¢. For continuous robot actions, the model is trained
with flow matching (FM) [46, 49| as the learning objective.
Specifically, given an action chunk A;, a FM timestep 7 €
[0, 1], and sampled noise € ~ N(0,I), we construct a noised
action chunk as A7 = 7A; + (1 — 7)e. The model is then
trained by minimizing the loss:

Low = | (17, 647 7) = (A= 9*, )

where (A; —€) and 7§ (-) are the ground-truth and predicted
flow vector, respectively. For text tokens or discrete action
tokens, the model is optimized to minimize the cross-entropy
(CE) loss between the ground-truth token sequence x1.; and
the predicted logits 75(-), such that:

Lok = H(zim, m5(1F", 0)) 2)

When jointly optimizing for both continuous and discrete
modalities, we combine the objectives into a weighted sum:

L=MpyLrym +w*McegLck, 3)

Here, w is the weight applied to the CE loss, Mg, is the
FM loss mask indicating whether the model should predict
continuous actions for a given sample, and Mcg is the mask
specifying token positions used to compute the CE loss.

2) Model Architecture: We adopt a VLA architecture
(Fig. [I[) composed of a pretrained VLM backbone and a flow
transformer action head (ActionFT). The VLM is initialized
from PaliGemma2-PT (google/paligemma2-3b-pt-224 [65])). It
encodes both the observed images and the language prompt
describing the task, and can optionally be trained to generate
text or discrete action tokens in addition to providing visiolin-
guistic representations. To obtain a compact representation for
action generation, similarly to [45], we introduce a special
observation encoding token into the backbone’s vocabulary
and append it to the end of the text prompt. We extract the
hidden state vectors corresponding to this token from the last
four layers of the VLM to form a single global conditioning
embedding and feed this into the ActionFT. The ActionFT
follows the diffusion transformer design introduced in [1].
It consists of 8 flow transformer layers, each conditioned
on observation features and the flow-matching timestep via
an adaptive layer norm (adaLN) MLP [56]. The ActionFT
receives the global conditioning embedding, a noised chunk of
continuous actions, and the flow matching time variable, and is

trained to predict the flow vector that guides iterative denoising
of the actions toward the target trajectory. Unlike prevalent
methods [6], our approach uses only a single token as visiolin-
guistic representations rather than attention keys and values
from all VLM layers. Our ablation studies (see Appendix
indicate that this compact representation enhances the model’s
generalization ability to unseen tasks and distribution shift.

3) Co-training and Inference Strategies: Co-training data
can be used at different phases of model training. We explore
three strategies (Table [[): (1) Single-phase co-training: train
jointly on target robot data and co-training data modalities
in a single phase; (2) Two-phase Ist-phase-only co-training:
train only on co-training modalities during the 1st-phase, then
on target robot continuous actions in the 2nd-phase; (3) Tivo-
phase full co-training: the same 1st-phase as strategy (2), but
train on both co-training and target robot data in the 2nd-phase.

We fix the training loss weights and batch data ratios based
on ablation experiment results (Appendix [IB]). Full training
details are provided in Appendix [2|

Beyond investigating when to incorporate co-training data,
we examine ways to leverage it. While our primary approach
treats co-training data solely as auxiliary supervision, recent
works [44] 92} 193] 167, 11, [13] suggest that explicitly con-
ditioning action prediction on CoT traces can boost policy
performance. We therefore also test this alternative paradigm
for selected co-training modalities: language annotations for
robot trajectories and latent actions for videos.

When generating actions conditioned on CoT traces at infer-
ence time, the VLM backbone first produces a CoT trace (see
Fig. [S4). The observation token is then appended to its end,
and the resulting visiolinguistic embedding (encoding images,
task prompts, and CoT traces) is extracted to condition the
ActionFT for continuous action prediction. During training,
we introduce probabilistic CoT conditioning: with probability
p, the policy is trained to generate actions conditioned on CoT
traces extracted from the co-training data; with probability
1 — p, the policy generates actions directly without CoT
conditioning. Importantly, CoT conditioning differs from other
co-training strategies only in that the predicted co-training
tokens are used directly to form the visiolinguistic embedding,
instead of just providing auxiliary supervision. We evaluate
the impact of this explicit inference-time CoT approach in
Section

B. Data Curation

We curate a comprehensive dataset consisting of target-
robot expert demonstration data and five distinct co-training
modalities. Our dataset comprises approximately 4,000 hours
of manipulation data spanning both robot episodes and human
videos, complemented by 50M vision-language samples that
encompass standard vision-language data as well as dense
annotations for both robot and human data. Fig. |2[ shows an
overview of the training data.

1) Target Robot Data: We adopt high-quality robot data
from our previous study [1] as our primary in-distribution
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TABLE 1
DATA COMPOSITION FOR DIFFERENT CO-TRAINING STRATEGIES.

Co-training

strategy Phase Data composition
Target-robot Co-training
continuous- data
action data

Single-phase 1st-phase v v

co-training

Two-phase Ist-phase - v

Ist-phase-only

co-training 2nd-phase v

Two-phase full 1st-phase - v

co-training 2nd-phase v v

training corpus. This dataset, which is referred to as TRI-
Ramen, contains 523 hours of manipulation data spanning
403 tasks and 53,411 demonstrations. It consists of real-world
(478 hours, 362 tasks, 46,063 demonstrations; namely TRI-
Ramen-Real) and simulation data (45 hours, 41 tasks, 7,348
demonstrations; namely TRI-Ramen-Sim). All demonstrations
are collected via teleoperation on dual Franka Panda robotic
arms as described in [1].

The observation space includes i) 4 RGB images (missing
images are zero-padded), and ii) a natural-language instruc-
tion. The action space includes i) end-effector poses w.r.t.
the station’s base frame, and ii) gripper widths. Actions are
represented as relative trajectories as in [15]. The policy is
conditioned only on the current observation and predicts an

action chunk with a horizon of 16.

2) Standard Vision-Language Data: To enhance the
model’s multimodal understanding (e.g., semantics, spatial,
planning), we incorporate VL datasets specifically designed
for robotic scenarios: RoboPoint [91] and RefSpatial [96].
RoboPoint comprises 1.3M data samples with 8.2M question
answering pairs, while RefSpatial contains 2.5M samples with
20M question answering pairs. Both datasets provide annota-
tions tailored for spatial referring tasks, spanning qualitative
visual question answering, quantitative queries on object and
spatial attributes/relations, point coordinate prediction, and
multi-step spatial reasoning.

3) Dense Language Annotations for Robot Trajectories: To
augment TRI-Ramen robot trajectories with action-grounded
textual descriptions, we employ two complementary anno-
tation strategies: (1) Scripted Annotation. Following [92],
we apply heuristic rules to generate per-step low-level ac-
tion primitives by comparing future and current end-effector
states over a 16-step horizon (corresponding to the horizon
of the action chunk). These annotations capture the robot’s
end effector translational movement, rotational changes, and
gripper state transitions. (2) VLM-based Annotation. While
scripted annotations provide structured action descriptions,
their linguistic diversity is limited and they lack contextual
information about object and environment interactions. To
address this, we prompt a VLM (GPT-5 [53]]) to generate rich,
contextually grounded descriptions. Specifically, for each robot
episode, we provide the VLM with: (i) frames downsampled



at 2-second intervals (approximating the 1.6-second action
chunk duration), (ii) the episode-level task instruction, (iii)
action hints generated by the heuristic rules described above,
and (iv) a reference image depicting a world-frame coordinate
to calibrate spatial directions (forward/backward, left/right,
up/down). The VLM is then prompted to produce diverse
frame-level action descriptions that capture interactions with
objects and the environment. To achieve a higher temporal
density, we process the dataset twice with a one-second
offset between passes, resulting in annotations at a per-second
frequency. More details are available in Appendix

4) Cross-embodiment Robot Data: We adopt the same
cross-embodiment dataset used in [1]], referred to as OXE-
Ramen, which is a curated subset of the Open X-Embodiment
dataset [S5]. This collection encompasses diverse robot mor-
phologies and manipulation scenarios, totaling 1,150 hours
across 12 robot setups, 924 tasks, and 466,415 demonstrations.
Observation and action spaces follow the same as in the target
robot data.

5) Human Videos: To extract rich information about the
motion and action (e.g, move forward and grasp) from hu-
man videos, we explore two distinct approaches: (1) La-
tent Actions. We utilize publicly available egocentric human
video datasets (e.g., Ego4D [28], EgoDex [31], Something-
Something V2 [27], Epic Kitchen [18], HoloAssist [73]), to-
taling 2,271 hours after filtering (see detailed data composition
in Table [S3). We train a latent action model (LAM) jointly
on human videos, TRI-Ramen, and OXE-Ramen to learn
a unified discrete action representation. Given consecutive
frames Iy, I, ac, T4y a¢, we encode them using a pretrained
DINOv2 [54] vision encoder to obtain visual features h;,
ht+%, h ¢4+ a¢. Following [13| [10], the LAM learns a quan-
tized codebook of latent actions (codebook size C') using three
modules: an inverse dynamics model (IDM), a visual forward
dynamics model (FDM), and an action forward dynamics
model (ActionFDM).

The IDM predicts two latent action segments:

Zt:t+%a Zt+%:t+At = IDM(hh ht+%, ht+At)7 “4)

while the FDM reconstructs future visual features:

By = FDM(ht, Zm%), )
hisnr = FDM(ht var Zyypay +At) . ©6)

To encourage latent tokens to capture physical dynamics
alongside visual changes, we additionally supervise on robot
data (TRI-Ramen, OXE-Ramen) by reconstructing the ground-
truth action chunks:

Ay ae = ActionFDM (Z,,, 5¢ ), )

Ay sy ar = ActionFDM (ZH%:HM) . ®

For human videos, we omit action reconstruction due to
missing ground-truth actions. After training, we run infer-
ence to obtain Zt:H_% and Zt-‘,—%:t-&-At at each time step,

concatenate them to form Z;, and quantize each Z; into 8
discrete tokens from a codebook of size C' = 32. For robot
videos, At = 1.6 seconds (matching the 16-step action chunk),
while for human videos we use At = 1.0 seconds to account
for faster motion. Implementation details are provided in
Appendix (2) VLM-generated Annotations. As an al-
ternative to latent actions, language can also serve as a unified
representation across different embodiments. It captures rich
semantic information about actions, goals, and objects while
being naturally compatible with VLAs. Specifically, we pro-
vide GPT-5 with: (i) frames from human videos downsampled
at 1-second intervals, (ii) episode-level instructions, and (iii)
a reference image depicting the world-frame coordinate triad.
We prompt the VLM to generate concise motion descriptions
of both hands, including rich information about interactions
with objects and the environment. We utilize Ego4D, EgoDex
and Something-Something V2 datasets, yielding 9M anno-
tated data samples. During training, we treat these samples
as another form of VL data. More details are shown in
Appendix

6) Discrete Robot Action Tokens: Several works suggest
that co-training models on both continuous and discrete robot
action representations improves sample efficiency and gener-
alization. Motivated by this, we explore two forms of discrete
robot action tokens: (1) FAST Tokens. We employ FAST [58]
to convert continuous action chunks into a compressed, near-
lossless sequence of discrete tokens. We use the off-the-shelf
tokenizer without fine-tuning, as we observe no significant
improvements in either average token length or reconstruction
error after fine-tuning on our data (see Appendix [3C). When
applied to our TRI-Ramen dataset, FAST produces sequences
of average length 42.1 with a vocabulary of 2,048 tokens.
(2) VQ-VAE Discrete Action Tokens. We compress action
chunks into 8 discrete tokens with codebook size 32 using a
VQ-VAE [72] on both TRI-Ramen and OXE-Ramen. Notably,
these dimensions are identical to those of the latent actions
learned from videos. This results in a much more compact,
lower-dimensional representation compared to FAST tokens.

III. EXPERIMENTS

To systematically investigate the effectiveness of co-training
data modalities and strategies, we conduct large-scale experi-
ments to address the following research questions:

1) How do different co-training data modalities, incorpo-
rated at different training phases, influence policy per-
formance on various dimensions (in-distribution, gener-
alization to distribution shift, unseen tasks, and language
following)?

2) Does combining effective co-training modalities yield
cumulative performance gains?

3) Can co-training enhance the quality of learned represen-
tations, thereby enabling rapid adaptation via fine-tuning
to unseen long-horizon, dexterous tasks?

4) How do the effective co-training modalities shape the
VLM backbone?
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Simulation and real-world evaluation. Policies are evaluated in simulation on 13 seen and 8 unseen tasks under nominal and distribution shift

(DS) conditions, where DS introduces appearance changes (e.g., lighting, textures, distractors, camera parameters). Real-world evaluations include language-
following experiments with seen objects, instruction generalization through paraphrasing, and unseen objects, as well as adaptation to unseen long-horizon

dexterous tasks via fine-tuning.

5) How does explicitly conditioning action generation on
CoT learned from co-training data affect policy perfor-
mance?

A. Evaluation

We evaluate policy performance across multiple important
dimensions: in-distribution performance, robustness to DS,
generalization to unseen tasks, and language following. We
additionally assess adaptation to unseen long-horizon dexter-
ous manipulation tasks via fine-tuning. To this end, we conduct
large-scale simulation and real-world experiments (Fig. [3).

1) Simulation Benchmark: We adopt the simulation bench-
mark presented in [1]] built on top of Drake [70]. Our bench-
mark includes 13 seen tasks and 8 unseen tasks (3 unseen
tasks defined in [1] plus 5 newly introduced to further probe
generalization; see Appendix [6). Each policy is evaluated with
50 rollouts per task under both nominal and DS conditions,
and performance is measured by success rate.

The 13 seen tasks fall within the training distribution, while
the 8 unseen tasks are designed to probe generalization beyond
it. These unseen tasks span several challenges: (i) semantic
understanding (e.g., identifying “red food” in PlaceRedFood-
IntoContainer, or distinguishing fruits from vegetables in
PlaceFruitintoContainer); (ii) multi-step manipulation (e.g.,
sequentially placing an apple and a pear on a plate in PutAp-
pleAndPearOnPlate); and (iii) compositional generalization
(e.g., generalizing from training demonstrations of placing
object A on C and object B on D to placing object A on

D). Here, “unseen tasks” refer to skills that do not appear
in the training data, although the underlying objects and
environments do.

To assess the model’s robustness to appearance changes,
we use DS conditions of the simulation benchmark, which
introduce variations in lighting, environmental backgrounds,
camera parameters, objects and table textures, and colors rel-
ative to the training distribution. Nominal conditions maintain
consistency with the training data across these factors.

2) Real-world Evaluation: We evaluate policies on a dual-
arm Franka robot platform across the following three settings.
Details of policy deployment are provided in Appendix [4]

Language Following. To evaluate the model’s ability to
follow natural language instructions, we design a suite of
language-guided pick-and-place experiments that assess three
distinct scenarios: (i) Seen Objects: Objects in this setting
appear in the training data. Instructions follow a simple
template: “pick up [object A] and place it in/on/next to [object
B]”, where objects are explicitly referenced by name. (ii)
Instruction Generalization: This setting tests the model’s
ability to comprehend the underlying meaning behind natural
language by rephrasing the instruction. Specifically, the policy
must (1) understand semantic object categories (e.g., “writ-
ing tools” referring to pens), (2) recognize objects by their
attributes (e.g., “the handle with soft bristles” referring to a
brush), and (3) demonstrate robustness to paraphrasing (e.g.,
altered syntax and verb choices). (iii) Unseen Objects: This
setting employs objects absent from the target robot training



data. Instructions follow the same template as the seen objects
setting.

Across all three settings, we evaluate 15 spatial layouts,
each containing 6-8 tabletop objects. For each layout, we use
three distinct language instructions targeting different objects,
yielding a total of 45 rollouts per setting. For the instruction
generalization setting, we employ identical spatial layouts and
target manipulation outcomes as the seen objects setting, but
vary the instruction phrasing. The full evaluation suite covers
49 seen objects and 52 unseen objects in total. We report
average task completion percentage as the evaluation metric
(see Appendix [/| for rubrics, experimental procedure, and
rubric quality assurance (QA)).

Long-horizon Dexterous Manipulation. To investigate
whether co-training facilitates rapid adaptation of the pre-
trained model to new challenging tasks unseen during pre-
training, we design three long-horizon, dexterous manipula-
tion tasks: PackltemsIntoStringBag, PourlngredientsintoSoup,
and StoreCleanDishes. On average, each task consists of 13
steps and takes 93 seconds to execute. These tasks require
fine-grained manipulation skills beyond simple pick-and-place
operations, such as capping a bottle, scooping food from a
bowl into a pot using a spatula, or inserting a wine glass
upside-down into a dish rack. For each task, we collect 200
demonstrations for fine-tuning. Each checkpoint is evaluated
for 30 rollouts per task, and we report average task completion
percentage as the evaluation metric (see Appendix [/| for
rubrics, experimental procedure, and rubric QA).

3) Statistical Analysis Framework: We perform rigorous
statistical analysis similar to recent work [1], with pairwise hy-
pothesis tests [[78,164] and Compact Letter Display (CLD) [39]
for comparison. Co-training strategies not sharing any CLD
alphabet are significantly different in average performance
at 5% family-wise error rate (FWER). Bayesian uncertainty
estimates are reported for individual strategies, with posterior
uncertainty visualized as violin plots overlaid on bar charts.
Dots and horizontal lines indicate empirical and posterior
means, respectively. Raw empirical distributions are reported
in Appendix [5] for the task-completion results, together with
more details of our statistical framework.

B. How do different co-training modalities, incorporated at
different training phases, influence policy performance?

We evaluate each co-training data modality using the three
strategies described in Section [[I-A3} single-phase co-training,
two-phase 1st-phase-only co-training, and two-phase full co-
training. We compare the policies obtained from these strate-
gies against a baseline policy trained exclusively on continuous
robot actions from TRI-Ramen (namely, no-co-training base-
line) using the flow-matching objective (M g=0). All policies
are first evaluated in simulation, with results summarized in
Fig. @l Modalities found to be effective are then evaluated in
real-world language-following experiments (Fig. [5).

Standard Vision-language Data Co-training. (1) As
shown in Fig. A and [5A, co-training with standard VL
data substantially improves robustness to DS, generalization

to unseen tasks, and language following, with no statistically
significant change in in-distribution performance (seen tasks).
(2) Fine-tuning the pretrained VLM on our curated VL data
enhances its representation for robot manipulation tasks, as
evidenced by gains from two-phase 1st-phase-only co-training
over the baseline (Fig[dA,[5]A). (3) Continuing to co-train with
VL data during the 2nd-phase further enhances performance
on unseen tasks and language following (particularly with
unseen objects). We hypothesize that this continued exposure
allows the model to retain the rich, generalizable knowledge
from the VL corpus, which is absent in the robot data, thereby
preventing catastrophic forgetting.

Dense Language Annotations for Robot Data Co-
training. (1) Co-training with scripted (Fig. @B, [5B) and
VLM-based (Fig. f[C, 5IC) annotations for robot data im-
proves the model’s robustness to DS, generalization to unseen
tasks, and language-following, with no statistically signif-
icant change in in-distribution performance. (2) Owing to
greater linguistic diversity and richer descriptions of object-
environment interactions, VLM-based annotations yield more
substantial improvements on unseen tasks and language fol-
lowing compared to scripted annotations (Fig. @B-C, [5B-C).
(3) In two-phase co-training, incorporating these annotations
during the 2nd-phase yields no additional benefit, suggesting
that they are most effective when used exclusively during the
Ist-phase (Fig. @B-C, 5B-C). We posit that, because these
annotations describe the same physical trajectories as the
robot action data, their utility primarily lies in bootstrapping
language-action alignment during the 1st-phase training, rather
than introducing new information during the 2nd-phase.

Cross-embodiment Robot Data Co-training. (1) As
shown in Fig. @D and 0D, co-training with cross-embodiment
robot data improves robustness to DS, generalization to unseen
tasks, and language following, with no statistically significant
change in in-distribution performance. (2) Cross-embodiment
robot data is most effective, providing the largest gains, when
confined to the first phase of two-phase co-training, particu-
larly for unseen-task generalization and robustness under DS
(Fig. D). When included during the second phase of training
in the two-phase full co-training, it yields negligible additional
benefit for language-following. We hypothesize that the di-
verse morphologies and manipulation strategies from cross-
embodiment data are most valuable for learning generalizable
visual and behavioral representations during the Ist-phase
training. In the 2nd-phase, the model benefits from specializing
to the target embodiment, at which point continued exposure
to other embodiments provides limited value.

Human Video Co-training. A) Latent Actions: In single-
phase co-training, the model jointly learns continuous actions
for TRI-Ramen and discrete latent action tokens extracted from
all video data (TRI-Ramen, OXE-Ramen, and human videos).
For two-phase methods, the model learns latent actions from
all video data in the 1st-phase. In two-phase full co-training, it
learns both TRI-Ramen continuous actions and latent actions
from all video data during the 2nd-phase.

Single-phase co-training with latent actions yields no im-
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Fig. 4. Simulation ablation of co-training data and strategies. Comparison of the no-co-training baseline with policies co-trained on a single data modality
across sequential training phases. Policies are evaluated on seen and unseen tasks under nominal and distribution shift conditions (A—H denote data modalities).
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Fig. 5. Real-world ablation of co-training data and strategies. Performance of the no-co-training baseline and policies co-trained with a single data
modality across training phases, evaluated at language-following with seen objects, instruction generalization, and unseen objects (A—E denote data modalities).

provement over the baseline (Fig. f[F), whereas single-phase  co-training baseline: 1st-phase trained on all robot data (TRI-
co-training with other effective modalities (e.g., standard vi- Ramen and OXE-Ramen), and 2nd-phase on TRI-Ramen; this
sion language data) consistently improves performance. On baseline is equivalent to the two-phase Ist-phase-only co-
the other hand, for two-phase co-training: (1) latent action training with cross-embodiment data without latent action co-
Ist-phase training improves performance on unseen tasks, and training. (b) Latent action three-phase co-training: (i) train
(2) incorporating latent actions during the 2nd-phase provides on latent actions from all video data, (ii) train on all robot
no additional benefit. These results suggest that the benefits data for continuous actions, and (iii) train on TRI-Ramen.
of latent action 1st-phase training out of two phases may stem Notably, the only difference between these two methods is
from increased computation rather than genuine knowledge that the latter includes an additional initial training phase on all
transfer. To investigate this, we design a data- and compute-  video data. As shown in Fig. [] the added initial latent action
rich setting, comparing two policies: (a) Cross-embodiment training phase provides no benefit in this data- and compute-
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standard vision-language (VL) data. FAST co-training along with VL data
fails to improve overall performance and degrades generalization on unseen
tasks compared to the VL-only co-training baseline.

rich setting.

Given that prior works [10 5, [13] highlight the utility of
latent action pretraining in a low target-robot-data regime,
we further explore its effectiveness across varying scales of
robot data, ranging from single-task to the full robot dataset.
Fig. |§] shows that latent action 1st-phase training improves
performance in the low target-robot-data regime, but these
benefits diminish as the quantity of fine-tuning robot data
increases.

B) VLM-generated Annotations: (1) As shown in Fig. @E
and [5E, co-training with VLM-generated annotations for
human videos improves robustness to DS, generalization to
unseen tasks, and language following, with no statistically
significant change in in-distribution performance. (2) In two-
phase co-training (Fig. [SE), continuing to incorporate these
annotations during the 2nd-phase enhances language-following
performance, particularly for unseen objects. We attribute
this benefit to the rich diversity of motions, objects, and
environments in human videos, which is absent from TRI-
Ramen. Joint training during the 2nd-phase allows the model
to maintain this broader world knowledge, rather than narrow-
ing to the distribution of target robot data.

Discrete Robot Action Tokens Co-training. A) FAST
Tokens: Our results suggest that FAST token co-training fails
to improve performance across all dimensions and degrades
generalization on unseen tasks (Fig. ). Prior works [33} [22]
show that FAST token co-training could improve performance
when pretrained on a broad mix of robot and standard VL
data. To examine this claim, we compare three approaches:
(a) VL + TRI-OXE-Ramen FAST: Ist-phase training on all
robot data using FAST tokens, alongside VL data. (b) VL
+ TRI-Ramen FAST: Ist-phase training only on TRI-Ramen
using FAST tokens, alongside VL data. (c) VL-only: 1st-phase
training with VL data only. All methods employ an identical

2nd-phase: continuous action learning on TRI-Ramen through
flow matching, with standard VL data co-training.

As illustrated in Fig. [/} FAST token co-training fails to
improve overall performance and degrades generalization on
unseen tasks. However, including OXE-Ramen during the
Ist-phase significantly outperforms training on TRI-Ramen
alone, indicating that FAST co-training might prove beneficial
when scaled to substantially larger robot datasets, though it
remains ineffective at our current data scale. We attribute
this to the nature of FAST tokens as near-lossless action
representations: co-training with FAST tokens may bias the
VLM backbone toward learning precise action mappings rather
than generalizable features.

B) VQ-VAE Discrete Action Tokens: (1) VQ-VAE discrete
action token co-training yields marginal improvements on
unseen tasks but slightly degrades performance under DS
(Fig. AH). (2) Incorporating VQ-VAE tokens during the 2nd-
phase of two-phase co-training provides no additional benefit.

Similar to latent action co-training, we examine its effective-
ness in a data- and compute-rich setting by comparing a cross-
embodiment co-training baseline against VQ-VAE discrete
action three-phase co-training policy that begins with learning
VQ-VAE discrete action tokens on all robot data during the
Ist-phase. As illustrated in Fig. [f] VQ-VAE co-training yields
no improvement in this regime.

Summary. (1) Co-training with diverse VL data and cross-
embodiment robot data substantially enhances the model’s
generalization to DS, unseen tasks, and language-following
capabilities. Notably, owing to their information richness,
co-training with standard VL data and language annotations
for human videos benefits both 1st-phase and 2nd-phase co-
training, whereas language annotations for robot trajectories
and cross-embodiment data are primarily effective during 1st-
phase in two-phase co-training. (2) Across all the effective
co-training data modalities, standard VL data, VLM-based
language annotations for robot data, and language annotations
for human videos are the most beneficial. These three specific
modalities are all in the form of diverse VL data, suggesting
that strengthening VL understanding of the VLM backbone
translates into better robot policies. (3) Discrete action tokens
(including latent actions extracted from videos, FAST tokens,
and action tokens learned from VQ-VAE) co-training yield
no statistically significant performance improvements in our
experiments. Specifically, co-training with FAST tokens de-
creases generalization, while latent actions from videos only
provide benefits in the low target-robot-data regime, with
benefits diminishing as the proportion of robot data increases.
(4) Across all co-training modalities examined, we observe no
statistically significant impact on in-distribution performance.

Fig. O] compares the best training strategies for each useful
co-training modality. Specifically, for standard VL and VLM-
generated language annotations for human videos, the best
models correspond to two-phase full co-training. For scripted
and VLM-based language annotation and cross-embodiment
robot data, the best models correspond to two-phase 1st-phase-
only co-training. Co-training with standard VL data, VLM-
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Fig. 9. Performance of policies trained with the best co-training strategies
for effective co-training data modalities. A) Simulation results on seen and
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language-following performance on seen objects, instruction generalization,
and unseen objects. Diverse vision-language and cross-embodiment robot data
substantially enhance the model’s generalization to distribution shifts, unseen
tasks, and language-following without affecting in-distribution performance.

based annotations for robot data, and annotations for human
videos most substantially improves performance on unseen
tasks and language following. Furthermore, benefiting from the
rich information absent in robot demonstrations, co-training
with standard VL data and annotations for human videos
more effectively enables the model to recognize unseen objects
compared to VLM-based annotations for robot data.

C. Does combining effective co-training modalities yield cu-
mulative performance gains?

Having identified effective co-training data modalities along
with their optimal training strategies, we further investigate
whether combining these modalities yields cumulative ben-
efits. We conduct an ablation study where we incremen-
tally add each effective data source (training details are
provided in Table |S_T[): (1) Baseline without co-training, (2)
+Vision-Language-Data: Standard VL data co-training only,
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Fig. 10.  Performance of policies co-trained with the effective data

modalities additively combined. A) Simulation results on seen and unseen
tasks under nominal and distribution shift conditions. B) Real-world evalu-
ations for language-following performance across seen objects, instruction
generalization, and unseen objects settings. Combining the effective co-
training data modalities yields cumulative gains in policy performance.

(3) +Robot-Annotation-Data: Adding dense language anno-
tations (both scripted and VLM-based) for robot data, (4)
+Human-Video-Annotation-Data: Adding VLM-generated an-
notations for human videos, (5) +Cross-Embodiment-Robot-
Data (namely, Final Model): Adding cross-embodiment robot
data.

As shown in Fig.[T0] combining effective co-training modal-
ities yields consistent cumulative performance gains across
all evaluation dimensions. Our Final Model achieves strong
performance across all settings, attaining a 72.6% empirical
success rate on simulation unseen tasks (36.4% improvement
over baseline) and 69.4% empirical average task completion
on real-world language following (45.3% improvement over

baselind).

Hmprovement rates are calculated using the empirical means.
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D. Can co-training enhance the quality of learned represen-
tations, thereby enabling rapid adaptation to unseen long-
horizon, dexterous tasks?

Prior works [} 16, 133]] have demonstrated that high-quality
pretraining enables policies to rapidly adapt to downstream
unseen tasks through fine-tuning. We investigate whether co-
training enhances learned representation quality by fine-tuning
(FT) on our suite of unseen long-horizon, dexterous manipula-
tion tasks. We compare three approaches: (1) FT Final Model:
fine-tune our Final Model from Section (trained with all
effective co-training modalities), (2) FT Baseline: fine-tune the
no-co-training baseline model (trained only on TRI-Ramen),
(3) Single Task: a single-task policy without pretraining.

As shown in Fig. |11} benefiting from our curated co-training
data and co-training strategies, our Final Model rapidly ac-
quires new skills through fine-tuning, achieving 90.2% average
task completion with only 200 demonstrations—a 22.8% im-
provement over the FT Baseline and a 42.9% improvement
over the Single Task policy. This demonstrates that effec-
tive co-training substantially enhances representation quality,
thereby enabling more fine-grained action learning in down-
stream tasks. We observe that failures in the FT Baseline and
the Single Task policy predominantly stem from insufficient
precision in manipulation: they frequently fail to align and
secure the cap onto the bottle in PackltemsIntoStringBag,
misalign the spatula for grasping in PourlngredientsIntoSoup,
and struggle to grasp the transparent cup in StoreCleanDishes.
In contrast, the FT Final Model consistently executes these
fine-grained manipulations with high precision.

E. How do the effective co-training modalities shape the VLM
backbone?

To investigate how the VLM backbone is shaped during co-
training, we benchmark the VLMs extracted from our trained
VLA policies on a suite of standard vision-language bench-
marks using VLMEvalKit [23]]. We evaluate policies trained
with individual effective co-training modalities as well as the
policy trained with all effective modalities additively combined
across three complementary axes: semantic understanding and
reasoning (MMBench, MME, SeedBench), spatial reasoning
(RealWorldQA, GQA, SpatialEval), and planning and long-
term reasoning (LEGO). We additionally report results for
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PaliGemma2-PT, the pretrained VLM used to initialize our
policies, and PaliGemma2-Mix, a version of the backbone
further fine-tuned for instruction following. These baselines
contextualize how VLA training and co-training modify the
backbone relative to its pretrained and instruction-tuned coun-
terparts. Fig. [I2] shows normalized performance across bench-
marks, and we present unnormalized scores in Table [S_Z}
Several trends emerge: (1) The no-co-training baseline per-
forms poorly across nearly all benchmarks. Compared to
PaliGemma2-PT and PaliGemma2-Mix, it exhibits substantial
degradation, losing all ability to generate language, indicating
that training exclusively on robot data erodes the VLM back-
bone visiolinguistic understanding inherited from pretrain-
ing. (2) Co-training with standard vision-language data leads
to strong improvements over the PaliGemma2-PT baseline
across most benchmarks, particularly in spatial reasoning and
real-world question answering. In contrast, other individual
modalities yield no gains when used in isolation. (3) When
effective co-training modalities are combined additively, the
VLM backbone exhibits consistent, across-the-board improve-
ments, outperforming both the no-co-training baseline and
the pretrained PaliGemma2-PT model. The combined model
achieves balanced gains across spatial, reasoning, and percep-
tion benchmarks, approaching or matching the performance of
PaliGemma2-Mix, indicating a more robust and well-rounded
multimodal representation. (4) The no-co-training baseline
shows both degraded VLM benchmark performance and the
weakest generalization in robot tasks, whereas policies co-
trained with effective co-training modalities combined improve
VLM benchmark scores and also generalize better under DS
and to unseen tasks.

F. How does explicitly conditioning action generation on
Chain-of-Thought (CoT) learned from co-training data affect
policy performance?

We examine whether generating intermediate CoT traces to
condition action generation provides any advantage over stan-
dard training. Specifically, we evaluate three co-training data
types that naturally yield CoT-like intermediate contents: (1)
scripted annotations for robot data, (2) VLM-based annotations
for robot data, and (3) latent actions from videos.

For each co-training data type, we train three additional poli-
cies that differ in their CoT conditioning strategies. All three
methods follow the same 1st-phase training procedure on the
corresponding co-training data as described in Section
During the 2nd-phase, all methods jointly learn from both
continuous robot actions and co-training data. Specifically:
(1) 50%-CoT Training-Only: During the Ist-phase, the model
conditions action generation on CoT with 50% probability.
At inference time, actions are generated directly without CoT.
(2) 50%-CoT with Inference: Training procedure is identical
to (1). At inference time, the model first generates CoT,
then conditions subsequent action generation on it. (3) 100%-
CoT: In the 2nd-phase, the model always conditions action
generation on CoT (100% probability). At inference time, the
model generates CoT and conditions action generation on it.
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Fig. 12. VLM backbone benchmarking for policies trained with the
effective co-training data modalities. A) Normalized performance of VLM
backbones co-trained with individual effective data modalities compared to the
no-co-training baseline, the pretrained PaliGemma2-PT used as backbone of
all our policies, and the instruction-tuned PaliGemma2-Mix model, evaluated
on standard vision-language, spatial, reasoning, and perception benchmarks.
B) Performance of the VLM backbone when effective co-training modalities
are combined additively. Combining modalities yields consistent, cumulative
improvements across all benchmarks, mirroring gains in downstream robot
policy generalization.

We compare these explicit CoT strategies against the im-
plicit two-phase co-training approaches discussed in Sec-
tion and the baseline policy trained without co-training.
As shown in Fig. while explicit CoT conditioning demon-
strates improvements over the baseline in certain settings
(e.g., co-training with VLM-based annotations for robot data
on unseen tasks), it consistently fails to improve upon the
implicit two-phase co-training approaches across all settings,
with discernible performance degradation when using VLM-
based annotations and latent actions as CoT sources. This
lack of improvement can be attributed to the nature of our
evaluation tasks. Prior works [44} 93] [67] demonstrating ben-
efits from explicit CoT generation typically evaluate on tasks
requiring multi-step planning or complex semantic reasoning.
In contrast, our simulation benchmark focuses on manipulation
tasks with clear objectives and immediate visual feedback,
where the mapping from observation to action is relatively
direct. In such settings, the implicit reasoning learned during
co-training appears sufficient, making explicit CoT generation
redundant.

The observed performance degradation, particularly pro-
nounced with VLM-based annotations and latent actions,
likely stems from two factors. First, these co-training data
sources may contain inherent inaccuracies—VLM-generated
annotations can misinterpret visual scenes or actions, while
latent action models may capture irrelevant visual changes
such as background variations rather than true action se-
mantics. Second, these two sources produce richer and more
complex CoT content compared to scripted annotations. When
explicitly conditioning action generation on such CoT, any
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Fig. 13.  Simulation ablation of CoT-conditioned action generation.

Evaluation of policies trained to explicitly condition action generation on
chain-of-thought (CoT) traces derived from A) scripted language annotations
for robot data, B) VLM-based language annotations for robot data, and C)
latent action tokens from videos. Action generation conditioned on CoT traces
from co-training data yields no improvement in our simulation benchmark.

errors or imprecision in the generated CoT directly propagate
to the subsequent action prediction, compounding the initial
inaccuracies and leading to less precise manipulation behavior.

IV. RELATED WORK

A. Large Behavior Models

Developing a general-purpose policy capable of perceiving,
understanding, and acting in the physical world is a central
objective in robotics. Early robot learning systems rely on
task-specific policies trained on limited robot demonstra-
tions [42), 24, |83]], which constrain their ability to generalize
beyond narrow training distributions. In contrast, LBMs scale
imitation learning, both in model capacity and dataset size, and
have shown impressive performance on dexterous tasks [[1].
A prominent class within LBMs is VLAs [37, 100, 21}
6, 133, 22, 168, 167, 15, 180, [79], which integrate pretrained
VLM [4] 165 47, [73] backbones. Representative examples
include VLMs paired with an action head as in [6} 133} [63]] and
fully autoregressive models [39] 58| 26]. Despite data scaling
efforts, VLAs exhibit a limited generalization [1, |94} 97]] to



new objects, environments, and instructions compared to non-
embodied foundation models like VLMs. This generalization
gap primarily stems from the vast difference in training data
availability [25,155]): robot datasets remain orders of magnitude
smaller than the internet-scale text and image corpora used for
VLMs.

B. Co-training for Robot Learning

To bridge the gap between limited robot data and internet-
scale multimodal resources, numerous studies have employed
co-training with diverse data modalities.

Public VL datasets [14, [71, 89, (19, 91, 96|, which are
rich in commonsense knowledge and naturally compatible
with VLA architectures, are widely adopted for co-training
robot policies [33) 199, 98| [39]. Beyond public datasets, re-
cent works [44] |84 61, 93] construct embodied reasoning
VL datasets directly on robot trajectories, incorporating rich
planning and spatial information. These efforts show evidence
that co-training with diverse vision-language data enhances
generalization [33, 44] and improves VLM’s learned repre-
sentations [11} [84] for manipulation tasks.

Several works have explored using cross-embodiment robot
data for co-training. Some efforts [2, [20, |85l [86, [7] train
a single policy directly on multiple robot embodiment data,
enabling a unified model to operate with diverse morphologies.
[6} 133} 22} 150, [48]] incorporate cross-embodiment data during
pretraining to learn generalizable, embodiment-agnostic rep-
resentations that are subsequently adapted to a specific target
robot. [69, [1} 137, 38| 162] leverage the Open X-Embodiment
dataset 53], a large-scale aggregation of demonstrations from
many robot platforms, aiming to improve robustness and
generalization.

Compared to robot data that typically requires teleoperation
for collection, human videos offer a more scalable data source.
A number of works [41}152,136, 140, 151] explicitly extract action
labels (e.g., hand poses) from videos for policy co-training;
however, obtaining accurate labels often requires additional
sensing modalities, such as VR devices [60, 90] or wearable
exoskeletons [81, [66]. Another line of research [9, |88, 13}
8l 112l 15] explores latent action representations by extracting
discrete action tokens from video frames with methods such
as VQ-VAE [72], which can serve as a unified representation
across different embodiments that encode motion information.
However, these approaches have been validated only in low
target robot data regimes.

Discretizing continuous robot actions into tokens allows
policies to treat action generation as a sequence mod-
eling problem. Beyond the naive per-dimension binning
approach [37, [100], advanced methods [S8, [76] employ
frequency-based techniques (e.g., FAST tokenizer) or vector
quantization (e.g., VQ-VAE) to compress the action space.
Notably, relying on discrete tokens for low-level control often
results in limited precision [22]] and slow inference 58} 39]. To
mitigate this, recent approaches [33} 22| 35| 93] utilize these
tokens solely for pre-training or co-training objectives, while
retaining an action head for continuous action generation. This
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strategy has been shown to enhance sample efficiency and
generalization.

C. Chain-of-thought for Robot Control

Inspired by the substantial benefits that CoT has brought to
language models when dealing with complex tasks [29, 34} [77,
93], recent works [92} |33} [11} 143]] have explored adapting CoT
for robot control. Specifically, these approaches first generate
intermediate content before conditioning action generation on
it. This intermediate content can be linguistic, such as subtask
decomposition or visual grounding information (e.g., object
locations) [44] 93] 167, 130, I87], or control-centric, such as end-
effector movements [39, 3] and latent actions [[10, [13]]. While
CoT has been shown to be beneficial for long-horizon tasks or
those requiring complex reasoning [44} 93/ |67], there is limited
empirical evidence comparing (i) explicitly conditioning the
policy on predicted CoT traces, versus (ii) using the same
CoT content solely as an auxiliary co-training objective. This
evidence is especially insufficient for manipulation tasks with
clear and well-defined goals.

V. DISCUSSION, LIMITATIONS, AND FUTURE WORK

We present a large-scale empirical study that systematically
dissects the impact of diverse co-training data and strategies on
the performance of LBMs. Our findings reveal that co-training
with vision-language data and cross-embodiment robot data
substantially enhances generalization to DS, unseen tasks, and
language following capabilities, while discrete action token
variants yield no statistically significant benefits. Furthermore,
we show that combining effective modalities produces cu-
mulative performance gains and enables rapid adaptation to
dexterous, long-horizon tasks via fine-tuning.

Notably, among all useful co-training modalities, diverse
vision-language data—including standard datasets and rich an-
notations for robot and human videos—demonstrate the most
substantial improvements. This observation resonates with the
Good Regulator Theorem [17], which states that a system
must incorporate an internal model (implicit or explicit) of
its operating world to effectively regulate it. In our setting,
strong foundation models (such as VLMs) provide precisely
such internal models that have rich semantic and spatial
understanding of the physical world. Our results suggest that
progress towards truly generalist robot policies is intrinsically
linked to advances in these foundation models. Specifically,
the VLM benchmarking results corroborate this interpretation:
co-training with effective data modalities not only improves
downstream robot performance but also preserves the visi-
olinguistic reasoning, spatial understanding, and perception
capabilities of the VLM backbone itself. While this pattern is
consistent across the models we evaluate, further investigation
is needed to more rigorously characterize the relationship
between backbone visiolinguistic understanding and policy
generalization. Interestingly, we find that explicitly condition-
ing action generation on CoT learned from co-training data
provides no benefit for our manipulation tasks, which have



clear immediate objectives, suggesting that implicit reasoning
learned during co-training suffices for such settings.

While our study provides promising insights, several limita-
tions should be acknowledged. First, while we examine various
sources of vision-language data, we do not systematically an-
alyze their impact by task taxonomy (e.g., visual question an-
swering, image captioning, object detection, spatial reasoning).
Understanding how different vision-language task categories
affect specific policy capabilities would enable more targeted
and sample-efficient data curation. Second, we explore only
coarse-grained representations for human videos through latent
actions and language annotations. As hand pose estimation
techniques advance and dexterous robotic hands continue to
evolve, explicitly extracting fine-grained dexterous motions
from human video may become a valuable co-training signal.
Third, our exploration of CoT is limited to forms naturally
arising from our co-training data—primarily low-level action
abstractions lacking high-level planning or complex reasoning.
Future work could investigate richer CoT formulations, such
as history and reflection traces or hierarchical plans for tasks
requiring complex decision-making. Finally, our study focuses
exclusively on imitation learning; exploring co-training within
alternative learning paradigms, such as world modeling or re-
inforcement learning, remains an open frontier for developing
scalable generalist policies.
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1. MODEL ARCHITECTURE AND HYPERPARAMETER
ABLATION

A. Model Architecture Ablation.

We present ablation results comparing four model architec-
tures: (1) Ours: Comprises a VLM and a flow transformer
action head (ActionFT) (2) mp4sr-equivalent [58]]: Consists
solely of a VLM that auto-regressively generates FAST tokens,
which are further decoded into continuous robot actions. (3)
mo-equivalent: Comprises a VLM and an action expert as
formulated in [6]. All attention keys and values from all tokens
across VLM layers are used as visual-linguistic representations
for the action expert. (4) mg 5-equivalent [33]]: This is similar
to mp-equivalent with VLM and action expert, but the flow-
matching timestep embedding is injected at each layer of the
action expert, whereas in mg-equivalent, the timestep embed-
ding is injected only at the first layer together with the noised
action. All four architectures use the same pretrained VLM
(PaliGemma2-PT) and are trained on TRI-Ramen data with
identical hyperparameters, except that mg-equivalent and g 5-
equivalent use batch size of 112 for 230k steps due to higher
memory consumption, while Ours and 7 4s7-equivalent use
batch size of 128 for 200k steps. As shown in Fig. [ST| while
Tr AsT-equivalent and 7y 5-equivalent achieve comparable in-
distribution performance to Ours, they exhibit significantly
degraded performance on distribution shifts and unseen tasks,
demonstrating that our more compact representation enhances
generalization. Additionally, 7mp-equivalent substantially under-
performs on in-distribution tasks, indicating the importance of
injecting flow-matching timestep embeddings at each layer of
the action network.

B. Hyperparameter Ablation.

We study two hyperparameters that are empirically critical
for effective training: the weighting factor used to balance the
flow-matching loss and the cross-entropy loss, and the ratio of
target robot data to co-training data within each batch.

We analyze these hyperparameters under the vision-
language data single-phase co-training setting. As shown in
Figs. and increasing either the weighting factor or
the co-training data ratio degrades in-distribution performance,
while setting these parameters too low diminishes the gener-
alization benefits from co-training. We adopt w = 0.02 and
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a 9:1 ratio of robot data to co-training data for co-training
with modalities whose samples are not paired one-to-one with
target robot data (i.e., standard vision-language data, cross-
embodiment robot data, and human videos). This configura-
tion preserves in-distribution performance while maximizing
generalization improvements.

For modalities paired with target robot data, such as lan-
guage annotations or discrete action tokens for robot data,
the model learns from both the continuous actions and the
corresponding co-training sample. Cross-embodiment robot
data constitutes a special case, as the learning objective is still
flow matching over robot actions; in this setting, target robot
and cross-embodiment data are mixed during the 1st-phase
training using a 6:4 batch ratio.

2. TRAINING DETAILS

Each phase of multi-task VLA policy training runs for 200k
steps with a default batch size of 128, using a cosine learning
rate schedule that decays from 2e-5 to 2e-6 over the last 60k
steps. Each training phase requires approximately 64 hours on
16 H100 GPUs in this default setting. The ratios of robot data
to co-training data follow Appendix Exceptions include:
(1) the latent action 1lst-phase training on all video data uses a
batch size of 256 due to the large video volume, (2) for multi-
modality co-training in Section to ensure the effective
sample count per modality remains consistent with single-
modality co-training policies, we increase batch size in certain
training phases. The data modalities, data ratios, and batch
sizes used at each training phase for these special VLA policies
are listed in Table [ST] For VLA policies trained or fine-tuned
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on a single task, we train for 30k steps and decay the learning
rate from 2e-5 to 2e-6 with a cosine schedule over the last
24k steps. All other shared training hyperparameters are listed
in Table

3. DATA PROCESSING AND CURATION DETAILS

A. Dense Language Annotations for Robot Trajectories

We derive scripted annotations by comparing the robot’s end
effector states at the current step and 16 steps into the future
(matching the action chunk horizon). This comparison yields,
for each gripper, the movement along the xyz axes, rotational
changes in roll, pitch, and yaw, and variations in gripper
width. We design the following template for both left and
right grippers: [right/left] gripper moves [forward/backward]
[right/left] [up/down], rotates [roll positive/negative] [pitch
positive/negative] [yaw positive/negative], [opens/closes] We
set thresholds of 2.5 c¢cm for xyz movement, 20 degrees
for rotation, and 1.3 cm for gripper width. When a change
does not exceed its corresponding threshold, we omit the
associated descriptor block from the annotation. For VLM-
based annotations, we present the complete prompt provided
to GPT-5 [53]] in Fig. [S5] Furthermore, Fig. [S6] illustrates
examples of scripted annotations and VLM-based annotations.

B. Human Videos

1) Latent actions: Human Video Data Curation. We
utilize five publicly available egocentric human video datasets:
Ego4D [28], EgoDex [31], Something-Something V2 [27],
Epic Kitchen [18], and HoloAssist [75]. For Ego4D, Epic
Kitchen, and HoloAssist, we filter videos using the pro-
vided language annotations with heuristic rules (e.g., maxi-
mum episode duration and removal of manipulation-irrelevant
episodes by action verbs such as look, walk, laugh). For
EgoDex and Something-Something V2, which are already
structured as high-quality short clips with precise instructions,
we use them directly without additional filtering. We also
utilize reverse-playback annotations available for a subset of
EgoDex videos. The total hours for each dataset are shown in
Table [S3]

Latent Action Model (LAM) Implementation.
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The IDM is a 12-layer spatial-temporal transformer [82]. A
Vector Quantization module (codebook size 32) maps continu-
ous IDM outputs to 8§ discrete latent tokens per time step. The
visual FDM is a 12-layer spatial transformer [82]]. ActionFDM
is a lightweight convolutional decoder from tokens to robot
action chunks. We train the LAM with batch size 1024 on 16
H100 GPUs for 300k steps (approximately 68 hours), using
learning rate le-4 with lk-step linear warmup and 20k-step
cosine decay.

2) VLM-generated annotations: We utilize three hu-
man video datasets for annotation: Ego4D, EgoDex, and
Something-Something V2. Representative annotation exam-
ples are shown in Fig. [S7, with the number of annotated
data samples summarized in Table For Ego4D, we first
filter the dataset by computing the intersection of video unique
identifiers (UIDs) from two filtered subsets: EgoVid [74] and
EgoHOD [57]], ensuring that only videos retained by both
filtering pipelines are included. We then segment the filtered
videos into 4-second clips following EgoVid’s splits, and
downsample each clip at 1-second intervals. Moreover, Ego4D
provides fine-grained action descriptions, which we pair with
each frame as action priors. Consequently, our prompt to
GPT-5 includes, for each clip: (i) the frames downsampled
at 1-second intervals, (ii) action priors for each frame, (iii)
instructions, and (iv) a reference image depicting the world-
frame coordinate triad. The complete prompt is provided in
Fig. [S8 This yields a set of frame-level pairs, with one
language annotation for each frame. To obtain accurate clip-
level instructions, we perform a second prompting step where
we prompt GPT-5 with the first and last frames of each
clip, along with the complete list of generated annotations,
to produce a clear and precise summary of the clip (prompt
shown in Fig. [S9).

For EgoDex and Something-Something V2, since neither
dataset provides fine-grained action descriptions, we omit
the frame-level action priors from the first prompting step.
Additionally, both datasets already include high-quality clip-
level instructions for each video, so we skip the second
prompting step.

C. Discrete Robot Action Tokens

FAST Tokens. We directly apply the off-the-shelf FAST
tokenizer [S8] to TRI-Ramen without fine-tuning, which yields
an average token length of 42.1 and a reconstruction error of
2.26e-4. We also experimented with fine-tuning the tokenizer
on TRI-Ramen, which results in an average token length of
36.8 and a reconstruction error of 2.26e-4. Fine-tuning does
not show substantial improvements. Hence, given that the off-
the-shelf tokenizer is trained on a larger and more diverse robot
dataset, which provides a more generalizable representation,
we opt to use it without fine-tuning.

VQ-VAE Discrete Action Tokens. We employ a
lightweight VQ-VAE architecture to compress action chunks
into discrete tokens. The encoder and decoder are both com-
pact networks: the encoder uses a sequence of 1D convolu-
tional layers with residual blocks to map the action chunk



TABLE S1
DATA MODALITIES, BATCH DATA RATIOS, AND BATCH SIZES (BS) USED AT EACH TRAINING PHASE FOR THE SPECIAL POLICIES.

Policy 1st-phase 2nd-phase 3rd-phase
Three-phase latent action co- TRI-Ramen : OXE-Ramen : Human videos TRI-Ramen : OXE-Ramen = 6 : 4; BS = TRI-Ramen : OXE-Ramen = 9 : 1; BS =
training =3:3:4;BS =256 128 128
VL + TRI-OXE-Ramen FAST TRI-Ramen (FAST) : Standard vision- TRI-Ramen Standard vision-language —
language data : OXE-Ramen (FAST) =5 data=9:1; BS =128
12:3;BS =128
+Robot-Annotation-Data Standard vision-language data : Language TRI-Ramen Standard vision-language —
annotations for TRI-Ramen = 1 : 1; BS = data=9:1; BS = 128
256
+Human-Annotation-Data Standard vision-language data : Language TRI-Ramen Standard vision-language —
annotations for TRI-Ramen : Language an- data : Language annotations for human
notations for human videos =1:1:1; BS videos =9 : 0.5 : 0.5; BS = 128
=384
+Cross-Embodiment-Robot- Standard vision-language data : Language TRI-Ramen Standard vision-language TRI-Ramen Standard vision-language
Data (Final Model) annotations for TRI-Ramen : Language an- data : OXE-Ramen : Language annotations data : Language annotations for human

notations for human videos =1 :1: 1; BS
=384

for human videos =4 : 1:4:1; BS =256

videos =9 : 0.5 : 0.5; BS = 128

TABLE S2
TRAINING HYPERPARAMETERS SHARED ACROSS ALL POLICIES.

Hyperparameter Value

Image observation horizon 1

Camera number (TRI-Ramen) 4 (2 scene cameras, 1 wrist camera
per robotic arm)

Random crop (for TRI-Ramen,
256 x 342 — 224 x 224); color
jitter (brightness = 0.3, contrast =
0.4, saturation = 0.5, hue = 0.05)
1000

linear

cosine decay

Image augmentation

Learning rate warm-up steps
Learning rate warm-up scheduler
Learning rate decay scheduler

TABLE S3
SUMMARY OF THE HOURS AND NUMBER OF VLM-GENERATED
ANNOTATION DATA SAMPLES FOR HUMAN VIDEO DATA.

Dataset Video Hours  Annotation Data Samples
Ego4D 774.5 hours 5.2M

EgoDex 744.4 hours 3.0M

EgoDex (reversed) 455.7 hours -
Something-Something V2 155.8 hours 0.8M

Epic Kitchen 60.4 hours -

HoloAssist 80.8 hours -

Total 2271.6 hours 9.0M

(horizon 16, dimension 20) into a lower-dimensional latent
space, while the decoder mirrors the encoder’s architecture
to reconstruct the original action chunk from quantized em-
beddings. The vector quantizer maps each latent vector to its
nearest entry in a learned codebook of size 32, discretizing the
continuous action space into 8 tokens per action chunk. The
model is trained using a combination of reconstruction loss,
quantization loss, and commitment loss as described in [72].

4. PoLICY DEPLOYMENT

We employ the same dual-arm Franka robot platform as
in [1]]. For simulation rollouts, the policy predicts a 16-step
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action chunk at each inference step and executes the first
8 steps in an open-loop manner before recomputing actions.
During real-world deployment, we observe that discontinuities
between predicted action chunks lead to jerky motions. To
address this issue, we adopt a temporal ensemble technique.
Specifically, the policy performs continuous inference (with
an average latency of 0.146 seconds) to generate temporally
overlapping action chunks. At each timestep, the actual action
to be executed is computed as a uniform average of the
corresponding actions from the four most recently predicted
action chunks.

5. STATISTICAL ANALYSIS

To mitigate the risk of over-interpreting small empirical
differences, we adopt the statistical analysis framework of [[1]]
to (1) rigorously compare multiple co-training strategies via
A/B testing and (2) quantify epistemic uncertainty using
Bayesian analysis. For comparisons based on average task
completion percentage, we use Welch’s t-test [[78]. For success
rate comparisons, we use the STEP test [64], a state-of-the-art
method for A/B testing of binary outcomes.

When comparing k strategies, we perform all k(k — 1)/2
pairwise tests and control the FWER at 5% using Bonferroni
correction. Final results are summarized using CLD [59], a
label-based representation of A/B tests. Two CLD represen-
tations that do not share an English alphabet are statistically
separated with at least 95% confidence. For example, if some
strategy A, B, and C respectively have a, ab, and b as the
corresponding CLDs, only the pair (A, C) is distinguished
with a significant difference in performance. Lexicographical
ordering of CLDs often aligns with empirical performance
(e.g., A > B > C in this example), but this is not guaranteed
when some pairwise differences are not statistically significant.
See Fig. Ep (“Seen DS” column) for an illustrative case.

In addition to hypothesis testing, we report Bayesian un-
certainty estimates for individual strategies. For success rate,
we compute posterior distributions using a uniform Beta



prior and observed success counts. For average task com-
pletion percentage, we use a uniform Dirichlet prior over
task progress values. Posterior uncertainty is visualized as
violin plots overlaid on bar charts in the main text (with dots
and horizontal lines indicating empirical and posterior means,
respectively), while raw empirical distributions are reported in

Fig. [ST0] [STI] [ST2} [ST3] for completeness (with dots only for

empirical means).

6. SIMULATION EXPERIMENT DETAILS

We visualize the 13 seen tasks and 8 unseen tasks in our
simulation benchmark under both nominal and distribution
shift conditions in Fig. with each task represented by
one snapshot showing the initial configuration. For both initial
conditions and success criteria, we adopt the same specifica-
tions as in [1]]. Specifically, for initial conditions, each rollout
samples from a predefined distribution deterministically based
on the simulation seed. We evaluate all the policies using
identical seed sets to ensure fair comparison. As evident from
the snapshots (Fig.[ST4), the scenarios are visually ambiguous;
hence, policies cannot determine the task based purely on
visual appearance and need language to disambiguate. For
success criteria, each task is assigned a fixed time budget, and
during execution, we monitor a set of task-specific predicates
over the simulator state to determine whether the policy has
successfully completed the task within the allocated time
budget.

7. REAL-WORLD EXPERIMENT DETAILS
A. Language Following.

We visualize all the initial conditions and corresponding
instructions for the Seen Objects, Instruction Generalization,
and Unseen Objects settings in Fig. [ST5] and Fig. [ST6 Task
completion is evaluated based on four milestones:

1) The robot moves towards the target object for picking
and reaches it within 10 cm.

The robot successfully grasps the target object for pick-
ing.

The robot moves the picked object to within 10 cm of
the target destination.

The picked object is correctly positioned at the destina-
tion according to the instruction:

2)
3)
4)

« In/On: The picked object rests inside or on top of
the destination.

« Next to: The picked object is positioned within 10
cm of the destination.

B. Long-horizon Dexterous Manipulation.

We visualize the sample initial conditions for the three
tasks in Fig. A collage of video frames showing the
task execution is displayed in Fig. [SI8] [ST9] [S20} The task
completion milestones for each task are defined as follows:

PackItemsIntoStringBag

o The left arm grasps the rim of the drawstring bag.

o The right arm grasps the opposite rim and opens the bag.

o The robot picks up the bottle.
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The robot picks up the bottle cap.

The robot securely caps the bottle.

The robot places the bottle inside the bag.

The robot picks up the ball.

The robot places the ball inside the bag.

The robot picks up the sunglasses.

The robot folds the first temple of the sunglasses.
The robot folds the second temple of the sunglasses.
The robot places the folded sunglasses inside the bag.
The robot grasps the two drawstrings.

The robot closes the bag by pulling the drawstrings.

PourlIngredientsIntoSoup

The robot grasps both handles of the soup pot.

The robot places the pot onto the left burner of the stove.
The right arm picks up the lid.

The right arm places the lid on the table.

The left arm picks up the carrot bowl and moves it on
top of the pot.

The right arm grasps the spatula.

The robot pours the carrots into the pot using the spatula.
The right arm places the spatula on the table.

The left arm places the empty bowl on the table.

The left arm picks up the mushroom bowl and moves it
on top of the pot.

The left arm pours the mushrooms into the pot and places
the empty bowl on the table.

The left arm picks up the cucumber bowl and moves it
on top of the pot.

The left arm pours the cucumbers into the pot and places
the empty bowl on the table.

The right arm picks up the lid.

The right arm places the lid onto the pot.

StoreCleanDishes

The robot opens the cabinet door.

The robot picks up the bowl.

The robot stacks the bowl onto the bowl inside the
cabinet.

The robot picks up the plate.

The robot stacks the plate onto the plate inside the
cabinet.

The robot picks up the cup.

The right arm passes the cup to the left arm.

The robot stacks the cup into the cup on the cabinet.
The robot picks up the glass.

The right arm passes the glass to the left arm.

The robot inserts the glass upside-down into the rack.

C. Experimental Procedure

All real-world evaluations follow a standardized and con-
trolled experimental procedure to ensure fair comparison
across policies. For each evaluation setting, we first generate
a list of policy checkpoints to be evaluated. Checkpoints are
selected sequentially from this list. For a given evaluation ses-
sion, an initial condition (IC), including the set of objects and
their poses, is sampled according to the task specification. The



table and surrounding workspace are then manually configured
to match this IC as closely as possible.

The selected policy checkpoint is executed once on the
physical robot, after which the experimenter records task out-
comes by following the rubrics. The evaluator then proceeds
to the next checkpoint in the list, using the same initial
condition. This process is repeated until all checkpoints have
been evaluated on that IC, after which a new IC is sampled
and the process restarts.

By evaluating all checkpoints under the same initial con-
dition within a short time window, this protocol ensures that
differences in performance are attributable to policy behavior
rather than variations in hardware, lighting, or environmental
setup. In effect, all checkpoints are evaluated under as nearly
identical physical conditions as possible. Moreover, any slow
and imperceptible changes in the conditions would equally
affect all the checkpoints.

D. Rubric QA

Similar to [1]], we conduct a quality assurance (QA) round to
estimate the frequency of potential discrepancies due to human
error or bias in the rubric evaluation of real-world rollouts.
We sample 895 evaluation rollouts (31.6% of the total) and
ask reviewers drawn from a separate pool than the original
evaluators to review the rollout videos and their rubrics. To
mitigate bias, the reviewers do not know which checkpoint
is evaluated in each video. The QA overall task completion
discrepancy, calculated as the average over all episodes and
milestones, is 2.01%.
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TABLE S4
VLM BACKBONE EVALUATION RESULTS ACROSS VISION-LANGUAGE BENCHMARKS.

Model RealWorldQA' GQA SpatialEval MMBench SEED MME-P MME-R LEGO
PaliGemma2-PT (VLA backbone) 0.24 31.68 0.26 0.01 0.24 701.56 242.50 0.03
PaliGemma2-Mix 0.55 59.81 0.34 0.68 0.70  1449.43  299.29 0.27
Baseline (no co-training) 0.02 0.06 0.02 0.00 0.03 193.75 44.29 0.01
Standard Vision Language Data Co-training (+Vision-Language-Data) 0.39 57.69 0.28 0.26 0.49 88.24 54.64 0.27
Scripted Language Annotation Co-training 0.05 0.00 0.07 0.00 0.06 80.06 32.14 0.02
VLM-based Language Annotation Co-training 0.02 0.06 0.03 0.00 0.04 92.00 31.07 0.01
Cross-embodiment Robot Data Co-training 0.01 0.01 0.01 0.00 0.01 114.02 33.21 0.00
VLM-generated Language Annotation for Human Video Co-training 0.03 0.02 0.01 0.07 0.09 105.43 65.36 0.03
+Robot-Annotation-Data 0.49 57.58 0.32 0.60 0.65 971.79 177.14 0.27
+Human-Annotation-Data 0.48 55.78 0.39 0.33 0.51 139743 253.57 0.27
+Cross-Embodiment-Robot-Data (Final Model) 0.47 58.02 0.33 0.56 0.63 1319.75  267.86 0.27
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You are a precise video-frame annotator for a bimanual robot.
The attempted task is: [Task Instruction]

You will receive:

* A sequence of {K} video frames; each frame is immediately followed by a weak heuristic hint for that same frame.

» One additional reference image at the end showing the world coordinate triad that defines forward, backward, right, left,
up, and down.

Your task:
For each of the {K} video frames (ignore the final reference image), produce one short imperative description of the most
salient manipulation action visible in that frame.

Mandatory content for every annotation:

1) Each action needs to specify whether it's for the left gripper or the right gripper. When both grippers move
simultaneously, you need to describe the action for each separately.

2) Mention the manipulated object when visible (e.g., 'red block’, 'mug’, 'screw’, ’lid’, 'tool‘). If unsure, use a generic noun
such as 'object’, 'block’, ’handle’, or ‘container’.

3) Include a motion direction relative to the reference triad when motion is present: forward/backward/left/right/up/down;
for rotations use ‘rotate’ (yaw positive is counterclockwise, negative is clockwise), ‘ilt’ (do not say roll, pitch, yaw).

4) You don‘t have to say rotation in every frame, say it when you think rotation is obvious, and sometimes rotation can be
referred to an object, like tilt towards the cup to pour water.

Use the heuristic hint as a prior: add missing object names. Resolve left/right using the reference triad (world frame), not
the camera view.

Style and constraints:

* Prefer verbs: approach, align, open the gripper, close the gripper, grasp, rotate, tilt, release, lift, lower, move
forward/backward/left/right/up/down, push, pull, slide, insert, retract, place, hold.

+ Do not mention the reference image, frames, camera, or any meta notes.

* Do not number items, do not add commentary, and do not use code fences.

Output format:

Return only a Python list containing exactly {K} strings (one per non-reference frame), using single quotes and commas,
e.g., [annot1’, ’annot2’, ...].

If your count does not match {K}, adjust before returning.

[image 1] [Scripted annotation 1]
[image 2] [Scripted annotation 2]

[image K] [Scripted annotation K]

And here is reference frame showing the frame of reference, telling you the direction of forward, backward, right, left, up,
and down. You need to strictly follow this reference frame.

Up (+2)
Backward (-X)

Left (-Y) Right (+Y)

Forward (+X)
Down (-Z)

Fig. S5. The prompt used to generate VLM-based language annotations for robot data.
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Language Annotations for Robot Data
PutGreenAppleOnSaucer

Scripted: Left gripper moves Scripted: Left gripper moves Scripted: Left gripper moves Scripted: Left gripper moves up,  Scripted: None

forward right down, rotates yaw backward down. forward up, closes. opens.

negative. VLM-based: Left gripper retract
VLM-based: Left gripper move VLM-based: Left gripper close to  VLM-based: Left gripper move up backward from the blue saucer after

VLM-based: Left gripper move backward and down to position grasp the green apple and move over the blue saucer and open to placing the apple.

forward-right and down, rotate around the green apple. forward and up. release the apple.

clockwise to align over the green

apple.

HangMugsOnMugHolderFromTable
> b [G=) 3

-

Y

4

Scripted: Left gripper moves Scripted: Left gripper moves Scripted: Left gripper moves Scripted: Left gripper moves left ~ Scripted: Left gripper moves left

forward right down, rotates yaw down. forward left up, closes. up, rotates yaw negative. down.
negative.

VLM-based: Left gripper move VLM-based: Left gripper close to  VLM-based: Left gripper carry the VLM-based: Left gripper move left
VLM-based: Left gripper continue  down onto the gray mug. grasp the gray mug and lift slightly — mug left and up toward the tree and down to align the mug handle
forward-right and down to align forward-left and up. holder while rotating clockwise. with a holder peg.

over the gray mug.

PeelPotato

Scripted: Left gripper moves right Scripted: Left gripper moves right Scripted: Left gripper moves left. ~ Scripted: Left gripper moves Scripted: Left gripper moves
up, rotates roll positive, closes. down. forward right. forward left, rotates pitch positive.
VLM-based: Left gripper pull the
VLM-based: Left gripper lift the VLM-based: Left gripper bring the peeler left across the potato fora ~ VLM-based: Left gripper move the VLM-based: Left gripper sweep

peeler up and move right while peeler right and down toward the peeling stroke as the right gripper  peeler forward-right to reset the peeler forward-left with a slight

slightly tilting; right gripper hold the potato while the right gripper keeps holds it down. for the next stroke; right gripper tilt to peel while the right gripper

potato steady. holding. maintain the hold. holds the potato.
SpreadCheeseOnPasta

Scripted: Left gripper moves Scripted: Left gripper moves Scripted: Left gripper moves Scripted: Left gripper moves Scripted: Left gripper moves

down, rotates pitch negative. forward down, closes. backward up, rotates roll positive ~ forward right down, rotates pitch backward, rotates yaw positive.
pitch positive. positive yaw negative.

VLM-based: Left gripper VLM-based: Left gripper move . VLM-based: Left gripper rotate

approach down toward the forward and down to grasp the VLM-based: Left gripper liftthe ~ VLM-based: Left gripper move the counterclockwise while moving

cylindrical cheese container, tilt cheese container, close the cheese container up and backward, cheese container fowvard-nght and  backward to sprinkle cheese onto

downward. gripper. tilt up to upright. down over the pasta bowl, tilt the pasta.

downward to pour.

InsertToastintoToaster

Scripted: Left gripper moves left, ~ Scripted: Left gripper moves Scripted: Left gripper moves Scripted: Left gripper moves right ~ Scripted: Left gripper closes.
rotates pitch negative. down. forward right down, opens. down.

VLM-based: Left gripper closes to
VLM-based: Left gripper moves ~ VLM-based: Left gripper lowers VLM-based: Left gripper opens to  VLM-based: Left gripper moves grasp the second bread slice from
left and tilts to align the bread with  down to insert the bread into the release the bread while moving right and down toward the rack for  the rack.
the toaster slot. toaster. slightly forward-right-down. another slice.

Fig. S6. Examples of scripted and VLM-based language annotations for robot data. Each row corresponds to a segment of an episode.
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VLM-generated Annotations for Human Videos

Instruction: Fill the green cap from the detergent bottle and pour it into the open detergent drawer.

Left hand tilt the detergent bottle Right hand tilt the filled green cap ~ Right hand keep pouring detergent Right hand continue pouring down  Right hand retract backward from

down to pour into the green cap down over the detergent drawer down into the open drawer while into the drawer; left hand hold the  the drawer after the pour; left hand
held steady by the right hand. and pour, while the left hand holds ~ moving slightly forward; left hand bottle near the sink. hold and slightly lift the detergent
the bottle. hold the detergent bottle. bottle up.

Instruction: Hold the bowl and slice the food with the knife.

. @) )
Left hand reach forward to grasp Left hand hold the bowl steady; Left hand hold the bowl; right hand  Left hand steady the bowl; right Left hand keep holding the bowl;
the rim of the bowl. right hand press the knife down to  pull the knife backward to slice the hand move the knife right to right hand lower the knife down
cut the food. food. reposition above the bowl. onto the cutting board to place it.

Instruction: Fold a small T-shirt on a green tablecloth while sitting.

Left hand pull the left side of the Right hand move forward to pinch  Right hand grasp the top-right edge Right hand pull the right side of the  Left hand hold the bottom hem
t-shirt leftward while the right the right sleeve of the t-shirt. of the t-shirt and lift slightly up. t-shirt leftward to fold toward the while the right hand press the
hand pull the right side rightward center. folded panel down.

to straighten.

Instruction: Insert the plush, and close the box on a wooden table with a white background while sitting.

Right hand grasp the pink plush Right hand insert the plush down Left hand and right hand move up  Left hand and right hand rotate the Left hand press the top of the lid
and move it forward toward the into the box; left hand hold the box  to grasp the upright box lid at the lid down and forward to close the down; right hand push the front flap
box; left hand move forward to rim. sides. box. backward to seat it.

steady the box front edge.

Instruction: Pushing mobile phone with marker pen.

Bt S

B — S — o —s -
Right hand approach the phone Right hand bring the marker pen Right hand press the marker pen Right hand continue pushing the Right hand slide the phone farther
with the marker pen moving left. left to align with the phone’s right against the phone and push it left. ~ phone left with the marker pen. left using the marker pen.

edge.

Instruction: Right hand insert the yellow toothbrush down into the sand.

Right hand insert the yellow Right hand push the toothbrush Right hand pull sand forward to Right hand press the sand down
toothbrush down into the sand. further down to plant it. cover the toothbrush base. over the toothbrush. smooth and hide the toothbrush.

Fig. S7. Examples of VLM-generated annotations for human videos. Each row corresponds to a segment of a clip.
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4 I

You are a precise video-frame annotator for egovideo of a human.
The attempted task is: [Task Instruction]

You will receive:

* A sequence of {K} video frames; each frame is immediately followed by a weak action hint for that same frame.

* One additional reference image at the end showing the world coordinate triad that defines forward, backward, right, left,
up, and down.

Your task:
For each of the {K} video frames (ignore the final reference image), produce one short imperative description of the most
salient manipulation action visible in that frame.

Mandatory content for every annotation:

1) Each action needs to specify whether it's for the left hand or the right hand. When both hands move simultaneously,
you need to describe the action for each separately.

2) Mention the manipulated object when visible (e.g., 'red block', 'mug’, 'screw’, 'lid", 'tool'). If unsure, use a generic noun
such as 'object’, 'block’, 'handle’, or 'container'.

3) Include a motion direction relative to the reference triad when motion is present: forward/backward/left/right/up/down;
for rotations use 'rotate’, 'tilt', 'turn’, 'spin’, 'twist', 'pivot' or similar (do not say roll, pitch, yaw).

4) You don't have to say rotation in every frame, say it when you think rotation is obvious, and sometimes rotation can be
referred to an object, like tilt towards the cup to pour water.

Use the action hint as a prior: add missing object names. Resolve left/right using the reference triad (world frame), not the
camera view.

Style and constraints:

* Prefer verbs: Prefer verbs: approach, align, open the hand, close the hand, grasp, rotate, tilt, release, lift, lower, move
forward/backward/left/right/up/down, push, pull, slide, insert, retract, place, hold.

+ Do not mention the reference image, frames, camera, or any meta notes.

* Do not number items, do not add commentary, and do not use code fences.

Output format:

Return only a Python list containing exactly {K} strings (one per non-reference frame), using single quotes and commas,
e.g., [annot1’, "annot2’, ...].

If your count does not match {K}, adjust before returning.

[image 1] [Action hint 1]
[image 2] [Action hint 2]

[image K] [Action hint K]

And here is reference frame showing the frame of reference, telling you the direction of forward, backward, right, left, up,
and down. You need to strictly follow this reference frame.

Up (+2)
Backward (-X)

Left (-Y) Right (+Y)

Forward (+X) B 2
\_ own (-Z) %

Fig. S8. The prompt used for VLM-generated annotations for the Ego4D dataset.
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You are a precise video annotator for egovideo of a human.
The attempted task is: [Task Instruction]
You will receive:
* The start and end frame of a video clip.
* A sequence of video annotations.
Your task:
Produce one short imperative instruction for the task shown in the video.
Mandatory content for every annotation:
1) Mention the manipulated object when visible (e.g., 'red block’, 'mug', 'screw’, 'lid", 'tool'). If unsure, use a generic noun
such as 'object’, 'block’, 'handle’, or 'container'.
2) Include one or two verbs describing the action.
3) You don't have to mention the agent (e.g. human, operator).
Use the video annotations as a prior.
Style and constraints:
* Do not number items, do not add commentary, and do not use code fences.
Output format:
Return only a string, using single quotes, e.g., 'instruction’.
[Start Frame]
[End Frame]
[VLM-generated Annotation 1]
[VLM-generated Annotation 2]
[VLM-generated Annotation K]
N J
Fig. S9. The prompt used to generate an episode instruction for a video clip from the Ego4D dataset.
(A) Standard Vision-language Data (B) Scripted Language Annotation (C) VLM-based Language Annotation
Co-training Co-training Co-training
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(D) Cross-embodiment Robot Data (E) VLM-generated Language Annotation
Co-training for Human Video Co-training
1.0 1.0
E3 E3
_5 0.8 _5 0.8 Baseline (no co-training)
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Fig. S10. Full distribution figures for the ablation of co-training data sources and strategies in real-world (Fig. .
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Task Completion %

Seen Instruction Unseen
objects generalization objects

Scripted language
annotation co-training
VLM-based language
annotation co-training

Baseline (no co-training)

Standard vision-language
data co-training

Average

Cross-embodiment data
co-training
VLM-generated language
annotation for human
video co-training

Fig. S11.  Full distribution figure for the real-world performance of the
policies trained with the best co-training strategy for all the effective co-

training data modalities (Fig. 93).
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Fig. S12. Full distribution figure for the real-world the performance of the
policy co-trained with all the effective data modalities combined (Fig. m3).
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Fig. S13. Full distribution figure for the adaptation to unseen long-horizon,

dexterous manipulation tasks via fine-tuning (Fig. [TT).
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Simulation Seen Tasks
PlaceCupByCoaster PushCoasterToCenterOﬂ' able

PutMugOnSaucer

s

TurnCupUpsideDown

PutSpatulaOnPlateFromDryingRack  PutSpatulaOnPlateFromTable
P ™ Y a X iy 3 PP = Y

Simulation Unseen Tasks
PutMug InCenterOﬂ'abIe PlaceRedFoodIntoContainer
] ¥ s 3

PlaceFruitintoContainer

Fig. S14. Tllustration of the 13 seen tasks and 8 unseen tasks used for evaluation in our simulation benchmark under both nominal and distribution shift
conditions.
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Language Following
Seen Objects & Instruction Generalization

Seen Objects

1. pick up the banana and place
it on the plate

2. pick up the apple and place it on
the coaster

3. pick up the kiwi and place it next
to the spatula

Instruction Generalization:

1. lift the yellow fruit and put it onto
the plate

2. grab the green apple, which
should then be placed on the
coaster

3. take hold of the kiwi and position
it beside the spatula

Seen Objects

1. pick up the peach and place it
next to the drying rack

2. pick up the brush and place it on
the towel

3. pick up the spoon and place it
next to the knife

Instruction Generalization:

1. lift the fruit and place it next to
the wooden structure

2. grasp the tool meant for
scrubbing and rest it atop the towel
3. hold the utensil used for
scooping and set it beside the
cutting tool

Seen Objects

1. pick up the brush and place it
next to the cream

2. pick up the cucumber and place
it in the bowl

3. pick up the strawberry and place
it on the parchment paper

Instruction Generalization:

1. grasp the handle with soft
bristles and put it by the tube of
cream

2. retrieve the fresh vegetable and
move it into the bowl!

3. hold the juicy red berry and rest
it on the parchment layer

Seen Objects

1. pick up the kiwi slices and place

them on the plate

2. pick up the pen and place it next
to the fork

3. pick up the mug and place it next
to the bread

Instruction Generalization:

1. move the slices of green fruit
and place them on the plate

2. grab the writing tool, which
should be then set next to the fork
3. move the mug so that it is next
to the bread

Seen Objects

1. pick up the tong and place it
next to the brush

2. pick up the red bell pepper and
place it in the bowl!

3. pick up the pepper shaker and
place it in the bin

Instruction Generalization:

1. lift the metal gripping tool and
set it beside the item with bristles
2. move the food into the bowl

3. retrieve the spice jar and
dispose of it properly in the bin

Seen Objects

1. pick up the baby cup and place
it next to the apple

2. pick up the kiwi and place it next
to the pear

3. pick up the mug and place it next
to the banana

Instruction Generalization:

1. take the cup designed for infants
and put it next to the apple

2. take hold of the kiwi-shaped item
and put it next to the pear

3. grab the drinking mug and move
it beside the banana

Seen Objects

1. pick up the pink cup and place it
on the carrot slice box

2. pick up the avocado and place it
in the trash bin

3. pick up the pear and place it on
the baking pan

Instruction Generalization:

1. retrieve the cup that is pink and
situate it onto the carrot box

2. take the black fruit that looks
overripe and put it where the trash
belongs

3. before baking, pick up the pear
and position it on the pan

Seen Objects

1. pick up the knife and place it on
the kitchen utensil

2. pick up the strawberry and place
it on the towel

3. pick up the carrot and place it
next to the cleaning tool

Instruction Generalization:

1. lift the cutting tool and rest it on
top of the eating utensil

2. hold the soft red berry and put it
on the towel for drying

3. pick up the vegetable with a
tapered end and place it near the
cleaning device

Seen Objects

1. pick up the avocado and place it
in the bowl

2. pick up the knife and place it on
the bread slice

3. pick up the pepper shaker and
place it in the pan

Instruction Generalization:

1. pick up the overripe fruit and
dispose of it in the white container
2. hold the item used for slicing and
put it over the piece of bread

3. grasp the spice container and
set it down in the metal rectangular
object

Seen Objects

1. pick up the wine glass and place it
on the cereal box

2. pick up the can and place it in

the trash bin

3. pick up the cleaning tool and
place it next to the bread

Instruction Generalization:

1. take the fragile object used for
wine and rest it over the cereal
container

2. take the small metallic cylindrical
shaped object and drop it in the
rubbish bin

3. pick up the object used for
brushing the toilet and place it close
to the baked itsm

Seen Objects

1. pick up the potato and place it
on the towel

2. pick up the straw and place it
next to the rope

3. pick up the cheese container
and place it next to the knife

Instruction Generalization:

1. lift the vegetable and set it on
the cloth

2. pick up the thin plastic tube and
set it near the rope

3. move the plastic box to the next
to the blade

Seen Objects

1. pick up the carrot slices and
place them in the bowl

2. pick up the baby cup and place
it on the parchment paper

3. pick up the cream and place it
next to the cleaning tool

Instruction Generalization:

1. grab the vegetables and put
them inside the bowl

2. raise the little container meant
for kids and set it on the cooking
paper

3. hold the tube and lay it close to
the tool for cleaning

Seen Objects

1. pick up the potato and place it
on the cereal box

2. pick up the spice jar and place it
on the paper

3. pick up the brush and place it
next to the pen

Instruction Generalization:

1. hold the potato-shaped item and
lay it over the box of corn flakes

2. after picking up the bottle, set it
carefully on the paper

3. lift the object used for brushing
and lay it close to the writing tool

Seen Objects

1. pick up the peach and place it in
the utensil crock

2. pick up the tongs and place it next
to the cleaning tool

3. pick up the carrot slices and place
them on the coaster

Instruction Generalization:

1. pick up the sweet fruit with pinkish
skin and set it into the utensil jar

2. retrieve the tongs-like object and
set it beside the cleaning device

3. move the container with thin
orange pieces of food onto the drink
mat

Seen Objects

1. pick up the kiwi slices and place
them on the towel

2. pick up the utensil and place it
next to the straw

3. pick up the can and place it next
to the pink cup

Instruction Generalization:

1. lift the thin green pieces and set
them down on the fabric

2. take the spatula and place it next
to the thin hollow tube

3. grab the soda can and move it
near the pink drinking vessel

Fig. S15. All the initial conditions and instructions used for real-world language following experiments for seen objects and instruction generalization settings.
For each initial condition, the numbered labels (e.g., 1.) indicate the corresponding instruction used in the seen objects evaluation and its alternative phrasing
used in the instruction generalization evaluation.
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Language Following
Unseen Objects

1. pick up the chip bag and place it 1. pick up the socks and place it 1. pick up the cleaning brush and 1. pick up the penguin doll and 1. pick up the green jar and place it

next to the flashlight next to the glasses place it on the book place it next to the brush on the towel

2. pick up the scissors and place it 2. pick up the cheese jar and place 2. pick up the flower and place it 2. pick up the light bulb and place it 2. pick up the cleaning tool and
next to the black stapler it next to the cup next to the glass jar on the plastic spatula place it next to the cup

3. pick up the screwdriver and 3. pick up the ball and place it in 3. pick up the light bulb and place it 3. pick up the can and place it next 3. pick up the socks and place it on
place it on the cloth the basket on the kitchen sponge to the comb the flower

1. pick up the tape and place it on 1. pick up the spicy sauce and 1. pick up the ball of yarn and 1. pick up the light bulb and place it in 1. pick up the ball and place it in

the glove place it on the face mask place it next to the glass bottle the basket the plastic spatula

2. pick up the small cup and place 2. pick up the cookie bag and 2. pick up the number 4 and place 2. pick up the hand washing fluid and 2. pick up the number 8 and place
it on the brush place it in the clip cup it on the star-shaped object place it on the star-shaped object it on the socks

3. pick up the can and place it in 3. pick up the fork and place it on 3. pick up the spoon and place it on 3. pick up the flower and place it on 3. pick up the sponge and place it
the bowl the glove the cookie box the paper towel roll on the book

1. pick up the flashlight and place it 1. pick up the ball of yarn and 1. pick up the screwdriver and 1. pick up the can and place it on 1. pick up the penguin doll and

on the towel place it next to the glass bottle place it on the paper towel roll the cookie box place it on the chip bag

2. pick up the brush and place iton 2. pick up the brush and place it 2. pick up the cup and place it on 2. pick up the fork and place it on 2. pick up the tape and place it

the comb next to the stapler the glove the face mask next to the glasses

3. pick up the hand washing fluid 3. pick up the can and place it next 3. pick up the spicy sauce and 3. pick up the scissors and place it 3. pick up the green jar and place it
and place it next to the cup to the clip cup place it in the bowl! on the glove next to the glass bottle

Fig. S16. All the initial conditions and instructions used for real-world language following experiments for the unseen objects setting.

Long-horizon Dexterous Tasks
ackItemsIntoSringBag

nEmwmARE
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Fig. S17. Sample initial conditions for the three real-world unseen, long-horizon, and dexterous tasks.
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Fig. S18. Video snapshots showing the robot executing the PackltemsintoStringBag task. The goal is to open the string bag, pack all the items (bottle, tennis
ball, and sunglasses) into it and pull its strings to close it. The robot needs to cap the bottle and fold the sunglasses before packing them.
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Fig. S19. Video snapshots showing the robot executing the StoreCleanDishes task. The goal is to store all the items (bowl, plate, cup, and wine glass) from
the drying rack into the dish cabinet. The robot must place the bowl onto the bowl stack, the plate onto the plate stack, stack the cup on top of the other
cups, and insert the wine glass into the glass rack.
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Fig. S20. Video snapshots showing the robot executing the PourlngredientsIntoSoup task. The goal is to pour all the ingredients (chopped carrots, mushrooms,
and cucumbers) into the soup pot. Prior to pouring, the robot must put the pot onto the stove and remove its lid. The robot must scoop out all of the carrot
slices using a spatula.
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